
Compilers
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Scanner

© 2023 Arthur Hoskey. All
rights reserved.

Parts of Speech in an English
Sentence

 What are the parts of speech of the words in the following
sentence?

The woman opened the door.

© 2023 Arthur Hoskey. All
rights reserved.

Parts of Speech in an English
Sentence

 What are the parts of speech of the words in the following
sentence?

The woman opened the door.

 The – Specific instance of an article.

 Woman – Specific instance of a noun.

 Opened – Specific instance of a verb.

 Door – Specific instance of a noun.

© 2023 Arthur Hoskey. All
rights reserved.

Article Noun Verb Article Noun

English Language Scanner

 An English language scanner would be given an English
language sentence and generate the parts of speech of
each word.

 The output is a stream containing the parts of speech of
each word.

 The scanner reads each word of the sentence and
determines its part of speech.

© 2023 Arthur Hoskey. All
rights reserved.

English Language
Sentence

English Language
Scanner

Stream of parts
of speech (noun,

verb, article,
etc…)

The woman
opened the door

English Language
Scanner

article noun
verb article noun

Program Scanner

 A program is given to the scanner as input.

 The scanner generates a stream of tokens as output

 Tokens are like the parts of speech in an English sentence.

© 2023 Arthur Hoskey. All
rights reserved.

High-level
Language

(Java, Python)

Scanner Stream of tokens

Scanner

 Within a compiler, the Scanner is responsible for lexical
analysis.

 The scanner reads from an input stream and returns
tokens.

 The scanner will have a method (say scan()) that reads
from the input file and returns one token each time it is
called.

 The scanner will keep track of where it is in the input
stream.

 Subsequent calls to scan() will keep it moving through the
input stream.

© 2023 Arthur Hoskey. All
rights reserved.

Scanner Terminology

 Token – Represents a lexical unit. For example: id (an
identifier or variable), if, intliteral, relationaloperator,
assignop.

 Lexeme – A sequence of characters that match a token.
For example: x (a variable or id), if (same as the token in
this case), 77 (an int literal), < (a relational operator), =
(assignop).

 A lexeme is like a specific instance of a token.

 For example:

© 2023 Arthur Hoskey. All
rights reserved.

Token Lexeme

id x

if if

intliteral 77

relationaloperator <

assignop =

identifier salary

Scanner Processing

 The scanner takes a stream of characters as input and
produces tokens.

 The lexeme for the identifier is "salary".

 The lexeme for the assignop is "=".

 The lexeme for the intliteral is "100".

© 2023 Arthur Hoskey. All
rights reserved.

s a l a r y = 1 0 0

identifier

token

assignop

token

intliteral

token

Regular Expressions and Scanner

 Regular expressions will be used to define the valid
patterns of tokens.

 Valid ids (variables) will have a regular expression that
defines their pattern.

 Integer literals will have a regular expression.

 Floating point literals will have a regular expression.

© 2023 Arthur Hoskey. All
rights reserved.

Scan Method

 Here is pseudocode for basic structure of a scanner's
Scan() method:

Scan() return TOKEN

Read c

While (c != EOF)

 Process c (will return tokens as appropriate)

 Read c

 Keep reading and processing one character at a time.

 The Process c statement will cause it to break out of the
loop when it gets to the end of a token.

 One call to Scan should consume one token in the input
stream.

© 2023 Arthur Hoskey. All
rights reserved.

Checking for a Whitespace
Character

 Here a method to check if a character is whitespace.

 It will check the ASCII code value to see if it corresponds
to whitespace.

IsWhiteSpace(int c) return boolean

If (c == 32) or (c == 9) or (c == 10) or (c == 13)

 return true

Else

 return false

 32 is a blank space

 9 is a tab

 10 is a linefeed (this means go to the next line)

 13 is a carriage return (go to the start of the line)

© 2023 Arthur Hoskey. All
rights reserved.

Ignoring Whitespace When
Scanning

 Here is the main loop for a scanner that ignores
whitespace.

Read c

While (not end of file)

 if (isWhiteSpace(c))

 Read c

 continue

 // Other scanner code goes here…

EndWhile

© 2023 Arthur Hoskey. All
rights reserved.

If the character is whitespace,

then read another character and

go back to the start of the loop

Check to see if the current character is

whitespace at the start of the loop

When to Keep Spaces

 A scanner will generally keep spaces that appear inside of a
string constant.

 Whitespace between tokens is generally removed.

 For example:

String s = "I love compilers";

© 2023 Arthur Hoskey. All
rights reserved.

Keep the spaces that appear

inside a string constant

Ignore whitespace

between tokens

Matching an Integer Constant (no
buffering)

 Check for an integer constant (an integer literal).

 Once a digit is found it must keep reading characters until
it reaches something that is not a digit (that is the end of
the integer constant).

 The character that causes it to break out of the loop (the
nondigit) must be put back into the input stream.

Read c

If (c is a digit)
 Read c
 While (c is a digit)

 Read c

 Unread c
 return TOKEN.INTLITERAL;

© 2023 Arthur Hoskey. All
rights reserved.

Keep reading characters

while they are digits

The last character that was read is

not a digit so it must be put back

into the input stream (that

character might be part of the next

token so should not be consumed)

Matching an Integer Constant
(with character buffering)

 The actual string should also be saved when reading an integer.

 Just add the character to a string buffer before reading the next
one.

 The buffer should be cleared when starting a new token.

 For example:

Read c

If (c is a digit)

 Clear buffer
 Add c to character buffer

 Read c
 While (c is a digit)

 Add c to character buffer

 Read c

 Unread c
 return TOKEN.INTLITERAL;

© 2023 Arthur Hoskey. All
rights reserved.

Add each new character

to the buffer. In Java, you

can use a StringBuilder

for the buffer.

Clear the buffer for

the new token

Processing Characters and
Buffering

 The identifier and intliteral characters should be buffered.

 When processing a new token clear the buffer.

 There is no need to buffer the assignop.

© 2023 Arthur Hoskey. All
rights reserved.

Before processing

Input Stream Buffer

Process s s

s = 1 0 0

s = 1 0 0

Process =s = 1 0 0

Process 1 1s = 1 0 0

Process 0 1 0s = 1 0 0

Process 0 1 0 0s = 1 0 0

Matching a Specific Character

 To match a single character, you should use an if statement
that tests for the character.

 The code below matches a semicolon.

 There should be a token value that represents the
character.

Read c

If (c == ';')
 return TOKEN.SEMICOLON

© 2023 Arthur Hoskey. All
rights reserved.

Check for the semicolon

character

Return the token that

represents a semicolon

Java PushbackReader

 Java PushbackReader.

 Java input stream class that allows putting data back into
the input stream after it is read.

 This can be used for the Unread pseudocode command.

PushbackReader pbr;

pbr = new PushbackReader(new FileReader(new File("in.txt")));

int inChar;

inChar = pbr.read();
System.out.println(inChar);

pbr.unread(inChar);

inChar = pbr.read();
System.out.println(inChar);

© 2023 Arthur Hoskey. All
rights reserved.

Reads the next character from

the input stream as an int (the

ASCII code of the character)

The unread method will put the

character back into the input stream

This read will get back whatever

character the unread method put

back on the input stream

Hands-on Exercise

 Write a program that scans unsigned integers and the +
operator. Here is some sample data (put in a file):

1

+

2

+

3

1. Create a console application project.

2. Open the input file and connect it to a PushbackReader.

3. Scan all data until the end of file is reached. When it
recognizes a token, it should print out the token name
(integer or plus). It should ignore all whitespace.

EXTRA CHALLENGE – Use multiple digits in a number (111,
222, etc…) and save them in a character buffer. Print the
contents of the buffer when a token is recognized.

© 2023 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Compilers
	Slide 2: Today’s Lecture
	Slide 3: Parts of Speech in an English Sentence
	Slide 4: Parts of Speech in an English Sentence
	Slide 5: English Language Scanner
	Slide 6: Program Scanner
	Slide 7: Scanner
	Slide 8: Scanner Terminology
	Slide 9: Scanner Processing
	Slide 10: Regular Expressions and Scanner
	Slide 11: Scan Method
	Slide 12: Checking for a Whitespace Character
	Slide 13: Ignoring Whitespace When Scanning
	Slide 14: When to Keep Spaces
	Slide 15: Matching an Integer Constant (no buffering)
	Slide 16: Matching an Integer Constant (with character buffering)
	Slide 17: Processing Characters and Buffering
	Slide 18: Matching a Specific Character
	Slide 19: Java PushbackReader
	Slide 20: Hands-on Exercise
	Slide 21: End of Slides

